Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Med Genet ; 61(5): 443-451, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38458754

RESUMO

BACKGROUND: Dystonia is one of the most common movement disorders. To date, the genetic causes of dystonia in populations of European descent have been extensively studied. However, other populations, particularly those from the Middle East, have not been adequately studied. The purpose of this study is to discover the genetic basis of dystonia in a clinically and genetically well-characterised dystonia cohort from Turkey, which harbours poorly studied populations. METHODS: Exome sequencing analysis was performed in 42 Turkish dystonia families. Using co-expression network (CEN) analysis, identified candidate genes were interrogated for the networks including known dystonia-associated genes and genes further associated with the protein-protein interaction, animal model-based characteristics and clinical findings. RESULTS: We identified potentially disease-causing variants in the established dystonia genes (PRKRA, SGCE, KMT2B, SLC2A1, GCH1, THAP1, HPCA, TSPOAP1, AOPEP; n=11 families (26%)), in the uncommon forms of dystonia-associated genes (PCCB, CACNA1A, ALDH5A1, PRKN; n=4 families (10%)) and in the candidate genes prioritised based on the pathogenicity of the variants and CEN-based analyses (n=11 families (21%)). The diagnostic yield was found to be 36%. Several pathways and gene ontologies implicated in immune system, transcription, metabolic pathways, endosomal-lysosomal and neurodevelopmental mechanisms were over-represented in our CEN analysis. CONCLUSIONS: Here, using a structured approach, we have characterised a clinically and genetically well-defined dystonia cohort from Turkey, where dystonia has not been widely studied, and provided an uncovered genetic basis, which will facilitate diagnostic dystonia research.


Assuntos
Distonia , Distúrbios Distônicos , Animais , Humanos , Distonia/genética , Distonia/diagnóstico , Distúrbios Distônicos/genética , Distúrbios Distônicos/diagnóstico , Testes Genéticos , Turquia , Biologia Molecular , Mutação , Proteínas de Ligação a DNA/genética , Proteínas Reguladoras de Apoptose/genética
2.
Sci Rep ; 14(1): 5428, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443427

RESUMO

Dietary interventions can reduce progression to type 2 diabetes mellitus (T2DM) in people with non-diabetic hyperglycaemia. In this study we aimed to determine the impact of a DNA-personalised nutrition intervention in people with non-diabetic hyperglycaemia over 26 weeks. ASPIRE-DNA was a pilot study. Participants were randomised into three arms to receive either (i) Control arm: standard care (NICE guidelines) (n = 51), (ii) Intervention arm: DNA-personalised dietary advice (n = 50), or (iii) Exploratory arm: DNA-personalised dietary advice via a self-guided app and wearable device (n = 46). The primary outcome was the difference in fasting plasma glucose (FPG) between the Control and Intervention arms after 6 weeks. 180 people were recruited, of whom 148 people were randomised, mean age of 59 years (SD = 11), 69% of whom were female. There was no significant difference in the FPG change between the Control and Intervention arms at 6 weeks (- 0.13 mmol/L (95% CI [- 0.37, 0.11]), p = 0.29), however, we found that a DNA-personalised dietary intervention led to a significant reduction of FPG at 26 weeks in the Intervention arm when compared to standard care (- 0.019 (SD = 0.008), p = 0.01), as did the Exploratory arm (- 0.021 (SD = 0.008), p = 0.006). HbA1c at 26 weeks was significantly reduced in the Intervention arm when compared to standard care (- 0.038 (SD = 0.018), p = 0.04). There was some evidence suggesting prevention of progression to T2DM across the groups that received a DNA-based intervention (p = 0.06). Personalisation of dietary advice based on DNA did not result in glucose changes within the first 6 weeks but was associated with significant reduction of FPG and HbA1c at 26 weeks when compared to standard care. The DNA-based diet was effective regardless of intervention type, though results should be interpreted with caution due to the low sample size. These findings suggest that DNA-based dietary guidance is an effective intervention compared to standard care, but there is still a minimum timeframe of adherence to the intervention before changes in clinical outcomes become apparent.Trial Registration: www.clinicaltrials.gov.uk Ref: NCT03702465.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 2/prevenção & controle , DNA , Glucose , Hemoglobinas Glicadas , Projetos Piloto , Idoso
3.
Sci Data ; 10(1): 849, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040703

RESUMO

Understanding the molecular mechanisms underlying frontotemporal dementia (FTD) is essential for the development of successful therapies. Systematic studies on human post-mortem brain tissue of patients with genetic subtypes of FTD are currently lacking. The Risk and Modyfing Factors of Frontotemporal Dementia (RiMod-FTD) consortium therefore has generated a multi-omics dataset for genetic subtypes of FTD to identify common and distinct molecular mechanisms disturbed in disease. Here, we present multi-omics datasets generated from the frontal lobe of post-mortem human brain tissue from patients with mutations in MAPT, GRN and C9orf72 and healthy controls. This data resource consists of four datasets generated with different technologies to capture the transcriptome by RNA-seq, small RNA-seq, CAGE-seq, and methylation profiling. We show concrete examples on how to use the resulting data and confirm current knowledge about FTD and identify new processes for further investigation. This extensive multi-omics dataset holds great value to reveal new research avenues for this devastating disease.


Assuntos
Demência Frontotemporal , Multiômica , Humanos , Lobo Frontal , Demência Frontotemporal/genética , Mutação
4.
J Clin Invest ; 131(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33539324

RESUMO

Dystonia is a debilitating hyperkinetic movement disorder, which can be transmitted as a monogenic trait. Here, we describe homozygous frameshift, nonsense, and missense variants in TSPOAP1, which encodes the active-zone RIM-binding protein 1 (RIMBP1), as a genetic cause of autosomal recessive dystonia in 7 subjects from 3 unrelated families. Subjects carrying loss-of-function variants presented with juvenile-onset progressive generalized dystonia, associated with intellectual disability and cerebellar atrophy. Conversely, subjects carrying a pathogenic missense variant (p.Gly1808Ser) presented with isolated adult-onset focal dystonia. In mice, complete loss of RIMBP1, known to reduce neurotransmission, led to motor abnormalities reminiscent of dystonia, decreased Purkinje cell dendritic arborization, and reduced numbers of cerebellar synapses. In vitro analysis of the p.Gly1808Ser variant showed larger spike-evoked calcium transients and enhanced neurotransmission, suggesting that RIMBP1-linked dystonia can be caused by either reduced or enhanced rates of spike-evoked release in relevant neural networks. Our findings establish a direct link between dysfunction of the presynaptic active zone and dystonia and highlight the critical role played by well-balanced neurotransmission in motor control and disease pathogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Alelos , Sinalização do Cálcio , Dendritos/metabolismo , Distúrbios Distônicos , Mutação de Sentido Incorreto , Células de Purkinje/metabolismo , Transmissão Sináptica , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Substituição de Aminoácidos , Animais , Dendritos/genética , Distúrbios Distônicos/genética , Distúrbios Distônicos/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout
6.
Lancet Neurol ; 18(12): 1091-1102, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31701892

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) in Parkinson's disease have increased the scope of biological knowledge about the disease over the past decade. We aimed to use the largest aggregate of GWAS data to identify novel risk loci and gain further insight into the causes of Parkinson's disease. METHODS: We did a meta-analysis of 17 datasets from Parkinson's disease GWAS available from European ancestry samples to nominate novel loci for disease risk. These datasets incorporated all available data. We then used these data to estimate heritable risk and develop predictive models of this heritability. We also used large gene expression and methylation resources to examine possible functional consequences as well as tissue, cell type, and biological pathway enrichments for the identified risk factors. Additionally, we examined shared genetic risk between Parkinson's disease and other phenotypes of interest via genetic correlations followed by Mendelian randomisation. FINDINGS: Between Oct 1, 2017, and Aug 9, 2018, we analysed 7·8 million single nucleotide polymorphisms in 37 688 cases, 18 618 UK Biobank proxy-cases (ie, individuals who do not have Parkinson's disease but have a first degree relative that does), and 1·4 million controls. We identified 90 independent genome-wide significant risk signals across 78 genomic regions, including 38 novel independent risk signals in 37 loci. These 90 variants explained 16-36% of the heritable risk of Parkinson's disease depending on prevalence. Integrating methylation and expression data within a Mendelian randomisation framework identified putatively associated genes at 70 risk signals underlying GWAS loci for follow-up functional studies. Tissue-specific expression enrichment analyses suggested Parkinson's disease loci were heavily brain-enriched, with specific neuronal cell types being implicated from single cell data. We found significant genetic correlations with brain volumes (false discovery rate-adjusted p=0·0035 for intracranial volume, p=0·024 for putamen volume), smoking status (p=0·024), and educational attainment (p=0·038). Mendelian randomisation between cognitive performance and Parkinson's disease risk showed a robust association (p=8·00 × 10-7). INTERPRETATION: These data provide the most comprehensive survey of genetic risk within Parkinson's disease to date, to the best of our knowledge, by revealing many additional Parkinson's disease risk loci, providing a biological context for these risk factors, and showing that a considerable genetic component of this disease remains unidentified. These associations derived from European ancestry datasets will need to be followed-up with more diverse data. FUNDING: The National Institute on Aging at the National Institutes of Health (USA), The Michael J Fox Foundation, and The Parkinson's Foundation (see appendix for full list of funding sources).


Assuntos
Bases de Dados Genéticas , Loci Gênicos/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Doença de Parkinson/genética , Predisposição Genética para Doença/epidemiologia , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/epidemiologia , Fatores de Risco
7.
Acta Neuropathol ; 138(2): 237-250, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31131421

RESUMO

The genetic variant rs72824905-G (minor allele) in the PLCG2 gene was previously associated with a reduced Alzheimer's disease risk (AD). The role of PLCG2 in immune system signaling suggests it may also protect against other neurodegenerative diseases and possibly associates with longevity. We studied the effect of the rs72824905-G on seven neurodegenerative diseases and longevity, using 53,627 patients, 3,516 long-lived individuals and 149,290 study-matched controls. We replicated the association of rs72824905-G with reduced AD risk and we found an association with reduced risk of dementia with Lewy bodies (DLB) and frontotemporal dementia (FTD). We did not find evidence for an effect on Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) risks, despite adequate sample sizes. Conversely, the rs72824905-G allele was associated with increased likelihood of longevity. By-proxy analyses in the UK Biobank supported the associations with both dementia and longevity. Concluding, rs72824905-G has a protective effect against multiple neurodegenerative diseases indicating shared aspects of disease etiology. Our findings merit studying the PLCγ2 pathway as drug-target.


Assuntos
Demência/genética , Longevidade/genética , Mutação , Fosfolipase C gama/genética , Alelos , Doença de Alzheimer/genética , Esclerose Amiotrófica Lateral/genética , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Demência Frontotemporal/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Doença por Corpos de Lewy/genética , Microglia/metabolismo , Esclerose Múltipla/genética , Neuroimagem , Doença de Parkinson/genética , Risco
8.
Mov Disord ; 34(6): 866-875, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30957308

RESUMO

BACKGROUND: Increasing evidence supports an extensive and complex genetic contribution to PD. Previous genome-wide association studies (GWAS) have shed light on the genetic basis of risk for this disease. However, the genetic determinants of PD age at onset are largely unknown. OBJECTIVES: To identify the genetic determinants of PD age at onset. METHODS: Using genetic data of 28,568 PD cases, we performed a genome-wide association study based on PD age at onset. RESULTS: We estimated that the heritability of PD age at onset attributed to common genetic variation was ∼0.11, lower than the overall heritability of risk for PD (∼0.27), likely, in part, because of the subjective nature of this measure. We found two genome-wide significant association signals, one at SNCA and the other a protein-coding variant in TMEM175, both of which are known PD risk loci and a Bonferroni-corrected significant effect at other known PD risk loci, GBA, INPP5F/BAG3, FAM47E/SCARB2, and MCCC1. Notably, SNCA, TMEM175, SCARB2, BAG3, and GBA have all been shown to be implicated in α-synuclein aggregation pathways. Remarkably, other well-established PD risk loci, such as GCH1 and MAPT, did not show a significant effect on age at onset of PD. CONCLUSIONS: Overall, we have performed the largest age at onset of PD genome-wide association studies to date, and our results show that not all PD risk loci influence age at onset with significant differences between risk alleles for age at onset. This provides a compelling picture, both within the context of functional characterization of disease-linked genetic variability and in defining differences between risk alleles for age at onset, or frank risk for disease. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Idade de Início , Loci Gênicos , Doença de Parkinson/genética , alfa-Sinucleína/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Bases de Dados Genéticas , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Glucosilceramidase/genética , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Adulto Jovem
9.
Acta Neuropathol ; 137(6): 879-899, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30739198

RESUMO

Frontotemporal lobar degeneration with neuronal inclusions of the TAR DNA-binding protein 43 (FTLD-TDP) represents the most common pathological subtype of FTLD. We established the international FTLD-TDP whole-genome sequencing consortium to thoroughly characterize the known genetic causes of FTLD-TDP and identify novel genetic risk factors. Through the study of 1131 unrelated Caucasian patients, we estimated that C9orf72 repeat expansions and GRN loss-of-function mutations account for 25.5% and 13.9% of FTLD-TDP patients, respectively. Mutations in TBK1 (1.5%) and other known FTLD genes (1.4%) were rare, and the disease in 57.7% of FTLD-TDP patients was unexplained by the known FTLD genes. To unravel the contribution of common genetic factors to the FTLD-TDP etiology in these patients, we conducted a two-stage association study comprising the analysis of whole-genome sequencing data from 517 FTLD-TDP patients and 838 controls, followed by targeted genotyping of the most associated genomic loci in 119 additional FTLD-TDP patients and 1653 controls. We identified three genome-wide significant FTLD-TDP risk loci: one new locus at chromosome 7q36 within the DPP6 gene led by rs118113626 (p value = 4.82e - 08, OR = 2.12), and two known loci: UNC13A, led by rs1297319 (p value = 1.27e - 08, OR = 1.50) and HLA-DQA2 led by rs17219281 (p value = 3.22e - 08, OR = 1.98). While HLA represents a locus previously implicated in clinical FTLD and related neurodegenerative disorders, the association signal in our study is independent from previously reported associations. Through inspection of our whole-genome sequence data for genes with an excess of rare loss-of-function variants in FTLD-TDP patients (n ≥ 3) as compared to controls (n = 0), we further discovered a possible role for genes functioning within the TBK1-related immune pathway (e.g., DHX58, TRIM21, IRF7) in the genetic etiology of FTLD-TDP. Together, our study based on the largest cohort of unrelated FTLD-TDP patients assembled to date provides a comprehensive view of the genetic landscape of FTLD-TDP, nominates novel FTLD-TDP risk loci, and strongly implicates the immune pathway in FTLD-TDP pathogenesis.


Assuntos
Proteínas do Tecido Nervoso/genética , Proteinopatias TDP-43/genética , Idoso , Expansão das Repetições de DNA , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Feminino , Lobo Frontal/metabolismo , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/imunologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Antígenos HLA-DQ/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Mutação com Perda de Função , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/fisiologia , Canais de Potássio/genética , Progranulinas/genética , Progranulinas/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas/genética , Proteínas/fisiologia , RNA Mensageiro/biossíntese , Fatores de Risco , Análise de Sequência de RNA , Sociedades Científicas , Proteinopatias TDP-43/imunologia , População Branca/genética
10.
Mov Disord ; 33(8): 1354-1358, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30145809

RESUMO

BACKGROUND: HPCA (hippocalcin) is one of the underlying genetic causes of autosomal-recessively inherited forms of dystonia. Here, we describe two consanguineous Turkish DYT-HPCA families carrying the novel HPCA mutations. METHODS: After detailed clinical and neurological examination, whole-exome sequencing was performed. RESULTS: Whole-exome sequencing analysis revealed two homozygous novel truncating mutations (p.W103* and p.P10PfsTer80) in the HPCA gene in two unrelated Turkish dystonia families presenting with complex dystonia. CONCLUSIONS: After identification of HPCA as a genetic cause of DYT-HPCA-like dystonia by Charlesworth et al, this is the second report in the scientific literature that describes dystonia families harboring HPCA mutations. Our findings confirm that HPCA leads to recessively inherited dystonia. © 2018 International Parkinson and Movement Disorder Society.


Assuntos
Distonia/genética , Hipocalcina/genética , Mutação/genética , Consanguinidade , Análise Mutacional de DNA , Distonia/diagnóstico , Saúde da Família , Feminino , Humanos , Masculino , Fenótipo , Turquia , Adulto Jovem
11.
Neurobiol Aging ; 69: 293.e9-293.e11, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29886022

RESUMO

We evaluated the genetic contribution of the T cell-restricted intracellular antigen-1 gene (TIA1) in a European cohort of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) patients. Exonic resequencing of TIA1 in 1120 patients (693 FTD, 341 ALS, 86 FTD-ALS) and 1039 controls identified in total 5 rare heterozygous missense variants, affecting the TIA1 low-complexity domain (LCD). Only 1 missense variant, p.Met290Thr, identified in a familial FTD patient with disease onset at 64 years, was absent from controls yet received a combined annotation-dependent depletion score of 11.42. By contrast, 3 of the 4 variants also detected in unaffected controls, p.Val294Glu, p.Gln318Arg, and p.Ala381Thr, had combined annotation-dependent depletion scores greater than 20. Our findings in a large European patient-control series indicate that variants in TIA1 are not a common cause of ALS and FTD. The observation of recurring TIA1 missense variants in unaffected individuals lead us to conclude that the exact genetic contribution of TIA1 to ALS and FTD pathogenesis remains to be further elucidated.


Assuntos
Esclerose Amiotrófica Lateral/genética , Demência Frontotemporal/genética , Antígeno-1 Intracelular de Células T/genética , Estudos de Coortes , Feminino , Frequência do Gene , Humanos , Masculino , Mutação de Sentido Incorreto , População Branca/genética
12.
Parkinsonism Relat Disord ; 48: 34-39, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29248340

RESUMO

INTRODUCTION: Mutations in the LRRK2 and alpha-synuclein (SNCA) genes are well-established causes of autosomal dominant Parkinson's disease (PD). However, their frequency differs widely between ethnic groups. Only three studies have screened all coding regions of LRRK2 and SNCA in European samples so far. In Turkey, the role of LRRK2 in Parkinson's disease has been studied fragmentarily, and the incidence of SNCA copy number variations is unknown. The purpose of this study is to determine the frequency of LRRK2 and SNCA mutations in autosomal dominant PD in Turkey. METHODS: We performed Sanger sequencing of all coding LRRK2 and SNCA exons in a sample of 91 patients with Parkinsonism. Copy number variations in SNCA, PRKN, PINK1, DJ1 and ATP13A2 were assessed using the MLPA method. All patients had a positive family history compatible with autosomal dominant inheritance. RESULTS: Known mutations in LRRK2 and SNCA were found in 3.3% of cases: one patient harbored the LRRK2 G2019S mutation, and two patients carried a SNCA gene duplication. Furthermore, we found a heterozygous deletion of PRKN exon 2 in one patient, and four rare coding variants of unknown significance (LRRK2: A211V, R1067Q, T2494I; SNCA: T72T). Genetic testing in one affected family identified the LRRK2 R1067Q variant as a possibly pathogenic substitution. CONCLUSION: Point mutations in LRRK2 and SNCA are a rare cause of autosomal dominant PD in Turkey. However, copy number variations should be considered. The unclassified variants, especially LRRK2 R1067Q, demand further investigation.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/genética , Mutação Puntual/genética , alfa-Sinucleína/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Testes Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Turquia , Adulto Jovem
13.
Genet Med ; 20(2): 240-249, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28749476

RESUMO

PurposeTo define the genetic spectrum and relative gene frequencies underlying clinical frontotemporal dementia (FTD).MethodsWe investigated the frequencies and mutations in neurodegenerative disease genes in 121 consecutive FTD subjects using an unbiased, combined sequencing approach, complemented by cerebrospinal fluid Aß1-42 and serum progranulin measurements. Subjects were screened for C9orf72 repeat expansions, GRN and MAPT mutations, and, if negative, mutations in other neurodegenerative disease genes, by whole-exome sequencing (WES) (n = 108), including WES-based copy-number variant (CNV) analysis.ResultsPathogenic and likely pathogenic mutations were identified in 19% of the subjects, including mutations in C9orf72 (n = 8), GRN (n = 7, one 11-exon macro-deletion) and, more rarely, CHCHD10, TARDBP, SQSTM1 and UBQLN2 (each n = 1), but not in MAPT or TBK1. WES also unraveled pathogenic mutations in genes not commonly linked to FTD, including mutations in Alzheimer (PSEN1, PSEN2), lysosomal (CTSF, 7-exon macro-deletion) and cholesterol homeostasis pathways (CYP27A1).ConclusionOur unbiased approach reveals a wide genetic spectrum underlying clinical FTD, including 11% of seemingly sporadic FTD. It unravels several mutations and CNVs in genes and pathways hitherto not linked to FTD. This suggests that clinical FTD might be the converging downstream result of a delicate susceptibility of frontotemporal brain networks to insults in various pathways.


Assuntos
Demência Frontotemporal/epidemiologia , Demência Frontotemporal/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Alelos , Biomarcadores , Proteína C9orf72/genética , Feminino , Demência Frontotemporal/diagnóstico , Demência Frontotemporal/metabolismo , Frequência do Gene , Estudos de Associação Genética/métodos , Testes Genéticos , Genótipo , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação , Doenças Neurodegenerativas/genética , Linhagem , Fenótipo , Análise de Sequência de DNA , Sequenciamento do Exoma
14.
Neurobiol Aging ; 57: 247.e9-247.e13, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28602509

RESUMO

Genetics has proven to be a powerful approach in neurodegenerative diseases research, resulting in the identification of numerous causal and risk variants. Previously, we introduced the NeuroX Illumina genotyping array, a fast and efficient genotyping platform designed for the investigation of genetic variation in neurodegenerative diseases. Here, we present its updated version, named NeuroChip. The NeuroChip is a low-cost, custom-designed array containing a tagging variant backbone of about 306,670 variants complemented with a manually curated custom content comprised of 179,467 variants implicated in diverse neurological diseases, including Alzheimer's disease, Parkinson's disease, Lewy body dementia, amyotrophic lateral sclerosis, frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration, and multiple system atrophy. The tagging backbone was chosen because of the low cost and good genome-wide resolution; the custom content can be combined with other backbones, like population or drug development arrays. Using the NeuroChip, we can accurately identify rare variants and impute over 5.3 million common SNPs from the latest release of the Haplotype Reference Consortium. In summary, we describe the design and usage of the NeuroChip array and show its capability for detecting rare pathogenic variants in numerous neurodegenerative diseases. The NeuroChip has a more comprehensive and improved content, which makes it a reliable, high-throughput, cost-effective screening tool for genetic research and molecular diagnostics in neurodegenerative diseases.


Assuntos
Variação Genética/genética , Estudo de Associação Genômica Ampla/métodos , Técnicas de Genotipagem/métodos , Ensaios de Triagem em Larga Escala/métodos , Doenças Neurodegenerativas/genética , Alelos , Apolipoproteínas E/genética , Humanos , Risco
15.
Genome Biol ; 18(1): 22, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28137300

RESUMO

BACKGROUND: Whole-exome sequencing (WES) has been successful in identifying genes that cause familial Parkinson's disease (PD). However, until now this approach has not been deployed to study large cohorts of unrelated participants. To discover rare PD susceptibility variants, we performed WES in 1148 unrelated cases and 503 control participants. Candidate genes were subsequently validated for functions relevant to PD based on parallel RNA-interference (RNAi) screens in human cell culture and Drosophila and C. elegans models. RESULTS: Assuming autosomal recessive inheritance, we identify 27 genes that have homozygous or compound heterozygous loss-of-function variants in PD cases. Definitive replication and confirmation of these findings were hindered by potential heterogeneity and by the rarity of the implicated alleles. We therefore looked for potential genetic interactions with established PD mechanisms. Following RNAi-mediated knockdown, 15 of the genes modulated mitochondrial dynamics in human neuronal cultures and four candidates enhanced α-synuclein-induced neurodegeneration in Drosophila. Based on complementary analyses in independent human datasets, five functionally validated genes-GPATCH2L, UHRF1BP1L, PTPRH, ARSB, and VPS13C-also showed evidence consistent with genetic replication. CONCLUSIONS: By integrating human genetic and functional evidence, we identify several PD susceptibility gene candidates for further investigation. Our approach highlights a powerful experimental strategy with broad applicability for future studies of disorders with complex genetic etiologies.


Assuntos
Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Doença de Parkinson/genética , Análise de Sequência de DNA/métodos , alfa-Sinucleína/genética , Adolescente , Adulto , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Estudos de Casos e Controles , Células Cultivadas , Criança , Modelos Animais de Doenças , Drosophila melanogaster/genética , Exoma , Humanos , Pessoa de Meia-Idade , Interferência de RNA , Adulto Jovem
16.
Alzheimers Dement (Amst) ; 6: 75-81, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28229125

RESUMO

INTRODUCTION: Mutations in the TANK-binding kinase 1 (TBK1) gene have recently been shown to cause frontotemporal dementia (FTD). However, the phenotype of TBK1-associated FTD is currently unclear. METHODS: We performed a single case longitudinal study of a patient who was subsequently found to have a novel A705fs mutation in the TBK1 gene. He was assessed annually over a 7-year period with a series of clinical, cognitive, and magnetic resonance imaging assessments. His brain underwent pathological examination at postmortem. RESULTS: The patient presented at the age of 64 years with an 18-month history of personality change including increased rigidity and obsessiveness, apathy, loss of empathy, and development of a sweet tooth. His mother had developed progressive behavioral and cognitive impairment from the age of 57 years. Neuropsychometry revealed intact cognition at first assessment. Magnetic resonance imaging showed focal right temporal lobe atrophy. Over the next few years his behavioral problems progressed and he developed cognitive impairment, initially with anomia and prosopagnosia. Neurological examination remained normal throughout without any features of motor neurone disease. He died at the age of 72 years and postmortem showed TDP-43 type A pathology but with an unusual novel feature of numerous TAR DNA-binding protein 43 (TDP-43)-positive neuritic structures at the cerebral cortex/subcortical white matter junction. There was also associated argyrophilic grain disease not previously reported in other TBK1 mutation cases. DISCUSSION: TBK1-associated FTD can be associated with right temporal variant FTD with progressive behavioral change and relatively intact cognition initially. The case further highlights the benefits of next-generation sequencing technologies in the diagnosis of neurodegenerative disorders and the importance of detailed neuropathologic analysis.

17.
Neurobiol Aging ; 50: 167.e11-167.e13, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27818000

RESUMO

Mutations in TMEM230 have recently been associated to Parkinson's disease (PD). To further understand the role of this gene in the Caucasian population, we interrogated our large repository of next generation sequencing data from unrelated PD cases and controls, as well as multiplex families with autosomal dominant PD. We identified 2 heterozygous missense variants in 2 unrelated PD cases and not in our control database (p.Y106H and p.I162V), and a heterozygous missense variant in 2 PD cases from the same family (p.A163T). However, data presented herein is not sufficient to support the role of any of these variants in PD pathology. A series of unified sequence kernel association tests also failed to show a cumulative effect of rare variation in this gene on the risk of PD in the general Caucasian population. Further evaluation of genetic data from different populations is needed to understand the genetic role of TMEM230 in PD etiology.


Assuntos
Estudos de Associação Genética , Proteínas de Membrana/genética , Mutação de Sentido Incorreto/genética , Doença de Parkinson/genética , Bases de Dados Genéticas , Exoma/genética , Feminino , Genes Dominantes/genética , Heterozigoto , Humanos , Masculino , Risco , Análise de Sequência , População Branca/genética
19.
Genome Med ; 8(1): 65, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27287230

RESUMO

BACKGROUND: Expression quantitative trait loci (eQTL) analysis is a powerful method to detect correlations between gene expression and genomic variants and is widely used to interpret the biological mechanism underlying identified genome wide association studies (GWAS) risk loci. Numerous eQTL studies have been performed on different cell types and tissues of which the majority has been based on microarray technology. METHODS: We present here an eQTL analysis based on cap analysis gene expression sequencing (CAGEseq) data created from human postmortem frontal lobe tissue combined with genotypes obtained through genotyping arrays, exome sequencing, and CAGEseq. Using CAGEseq as an expression profiling technique combined with these different genotyping techniques allows measurement of the molecular effect of variants on individual transcription start sites and increases the resolution of eQTL analysis by also including the non-annotated parts of the genome. RESULTS: We identified 2410 eQTLs and show that non-coding transcripts are more likely to contain an eQTL than coding transcripts, in particular antisense transcripts. We provide evidence for how previously identified GWAS loci for schizophrenia (NRGN), Parkinson's disease, and Alzheimer's disease (PARK16 and MAPT loci) could increase the risk for disease at a molecular level. Furthermore, we demonstrate that CAGEseq improves eQTL analysis because variants obtained from CAGEseq are highly enriched for having a functional effect and thus are an efficient method towards the identification of causal variants. CONCLUSION: Our data contain both coding and non-coding transcripts and has the added value that we have identified eQTLs for variants directly adjacent to TSS. Future eQTL studies would benefit from combining CAGEseq with RNA sequencing for a more complete interpretation of the transcriptome and increased understanding of eQTL signals.


Assuntos
Lobo Frontal/química , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Locos de Características Quantitativas , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Bases de Dados Genéticas , Feminino , Variação Genética , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Adulto Jovem
20.
Artigo em Inglês | MEDLINE | ID: mdl-27127721

RESUMO

BACKGROUND: PLA2G6-associated neurodegeneration (PLAN) is a recessive neurodegenerative disorder characterized by three distinct phenotypes: infantile neuroaxonal dystrophy (INAD), atypical neuroaxonal dystrophy (atypical NAD), and PLA2G6-related dystonia-parkinsonism. METHODS: A consanguineous index case from Turkey was diagnosed with early-onset Parkinsonism at the Istanbul Faculty of Medicine. She and her unaffected brother were subjected to whole-genome sequencing. RESULTS: In this report, we describe a 33-year-old index case with parental consanguinity and early-onset Parkinsonism. Whole-genome sequencing of this individual revealed that a homozygous p.R747W mutation in PLA2G6 segregates with the disease in this family. DISCUSSION: This result supports the importance of prioritizing this gene in mutational analysis of autosomal recessive Parkinsonism, and confirms the clinical heterogeneity of PLAN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...